The Joy of Chemistry

August 24, 2008 - Leave a Response

Oliver Sacks is a neurologist whose book Awakenings was made into a film starring Robin Williams. In this essay for The New Yorker, he revels in the excitement and heroism of scientific discovery.

My parents and my brothers had introduced me… to some kitchen chemistry: pouring vinegar on a piece of chalk in a tumbler and watching it fizz; then pouring the heavy gas this produced, like an invisible cataract, over a candle flame, putting it out straightaway. Or taking red cabbage, pickled with vinegar, and adding household ammonia to neutralize it. This would lead to an amazing transformation, the juice going through all sorts of colors, from red to various shades of purple, to turquoise and blue, and finally to green. I enjoyed these experiments, I wondered what was going on, but I did not feel a real chemical passion [until I] remet Uncle Dave, and saw his lab and his passion for experiments of all kinds.

It was through reading Mary Elvira Weeks’ Discovery of the Elements… that I got a vivid idea of the lives of many chemists, the great variety, and sometimes vagaries, of character they showed; and the relation (sometimes) between their characters and their work. Here I found quotations from the early chemists’ letters, which portrayed their excitements (and despairs) as they fumbled and groped their way to their discoveries, losing the track now and again, getting caught in blind alleys, though ultimately reaching the goal they sought.

If Humphry Davy was the first chemist I had ever heard of, he was also the one I most warmed to. I loved reading of his experiments with explosives and electric fish; his discovery of incandescent metal filaments and electric arcs; of catalysts… of the physiological effects of… laughing gas… He appealed to me especially because he was boyish and impulsive, the way he danced with joy all around his lab when he first isolated potassium, in 1807, and saw the shining metallic globules burst and take fire…

It was through reading these accounts that I first realized one could have heroes in real life. There seemed to me an integrity, an essential goodness, about a life dedicated to science. I had never given much thought to what I might be when I was “grown up” – growing up was hardly imaginable – but now I knew: I wanted to be a chemist. A sort of eighteenth-century chemist coming fresh to the field, looking at the whole, undiscovered world of natural substances and minerals, analyzing them, plumbing their secrets, finding the wonder of new and unknown metals.

See here for details on how to read the full essay.


Seeing Through Stone

August 24, 2008 - Leave a Response

Richard Fortey loves fossils. In Trilobite! he waxes poetic about the trilobite’s stone eyes.

Trilobite eyes are made of calcite. This makes them unique in the animal kingdom.

Calcite is one of the most abundant minerals. The white cliffs of Dover are calcite… Limestones (which are calcite) have been used to build… the sublime crescents of Bath, the pyramids of Gizeh, the amphitheatres and Corinthian columns of classical times. Polished slabs composed of calcite deck the doors of Renaissance churches in Italy, still grace the interiors of Hyatt–Regency hotels, or conference halls, or wherever architects wish to suggest the dignity that only real rock seems to confer.

The purest forms of calcite are transparent. In building stones and decorative slabs it is the impurities and fine crystal masses that provide the colour and design… The dark red of the scaglio rosso so typical of Italian church doors is a deep stain of ferric iron. But when a calcite crystal grows more slowly in nature, then it may acquire its perfect crystal form, and be glassy clear…

Look into a crystal of Iceland spar and you can see the secret of the trilobite’s vision. For trilobites used clear calcite crystals to make lenses in their eyes; in this they were unique. Other arthropods have mostly developed ‘soft’ eyes, the lenses made of cuticle similar to that constructing the rest of the body.

The science of the eye demands a little explanation. It all depends on the optical properties of calcite… If you break a large piece of crystalline calcite it will fracture in a fashion related to its fine atomic structure… You are left with a regular, six-sided chunk of the mineral in your hand, termed a rhomb… The clear calcite of this not-quite-a-cube treats light in a peculiar way. If a beam of light is shone at the sides of the rhomb it splits in two; this is known as double refraction. The rays of light so produced are the ‘ordinary’ and the ‘extraordinary’ rays: their course is determined, just like the shape of the rhomb, by the stacking of the individual atoms. There is a huge specimen of Iceland spar on the first floor of London’s Natural History Museum through which you may peer to see two images of a Maltese cross, one generated by the extraordinary, and the other by the ordinary rays. But there is one direction, and one direction only, in which light is not subjected to this optical splitting… from this direction it does not split into two rays at all but passes straight through.

If to travel back to the time of the trilobite is a historical sea-change then there can be nothing stranger than the calcareous eyes of the trilobite. And pearls are chemically the same as the trilobite’s unblinking lenses, being yet another manifestation of calcium carbonate, although pearls are exquisite reflectors of light rather than transmitters of it… The trilobite saw the submarine world with eyes tessellated into a mosaic of calcified lenses… his stony eyes read the world through the medium of the living rock.

Buy Trilobite!


August 19, 2008 - Leave a Response

Welcome to Science Bits, the home of brief, inspiring, fascinating science writing. For those who find reality more exciting than fiction, and for those with an MTV/Google/Twitter-attention span.

Suggest your favorite Science Bits in the comments. Please include author, page number, and link if they are relevant.

Stay tuned.